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Abstract Beta-cypermethrin has long been recommended
as an effective pesticide to control the soybean aphid, Aphis
glycines Matsumura, a serious pest in soybean crops.
Besides acute toxicity, it leads to changes in life history
traits of A. glycines, notably its reproductive potential. This
study has assessed the effects of five sublethal concentra-
tions (0.625, 1.25, 2.5, 5 and 10 µg/L) of beta-cypermethrin
on different life history traits of A. glycines. Exposure to
these concentrations caused shorter oviposition period and
reduced adult longevity. The strongest stimulatory effect on
aphid reproduction was achieved when exposed to a higher
sublethal beta-cypermethrin concentration (5 µg/L). Net
reproduction rate (R0), intrinsic rate of increase (rm) and
finite rate of increase (λ) were significantly higher than that
of the control, increasing by 20.58, 4.89 and 2.06%,
respectively. We found no significant difference in mean
generation time (T) between the treatment of 5 µg/L beta-
cypermethrin and the control. However, when the con-
centration increased to 10 µg/L, the reproduction behavior
was restrained and the mean generation time (T) was
shortened, resulting in significant decrease in R0 and T by

16.58 and 3.83%, respectively. In conclusion, a sublethal
concentration (5 µg/L) of beta-cypermethrin triggered the
strongest hormesis on A.glycines, thus providing valuable
knowledge on the sublethal effects of this insecticide on
soybean aphids. Hormesis may be one of the mechanisms
underlying pest resurgences, and better knowledge
would enable a more effective use of insecticides in Inte-
grated Pest Management programs.
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Introduction

Sublethal effects are defined as physiological and/or beha-
vioral effects on individuals that survive exposure to a toxic
compound at sublethal doses (Desneux et al. 2007). These
subtle effects can be negative on behavioral and physiolo-
gical traits of arthropods, including longevity, development
rate, fecundity, sex ratio, feeding activity, food searching
and oviposition (Desneux et al. 2004; He et al. 2013; Chen
et al. 2015; Fekri et al. 2016; Yao et al. 2015; Rix et al.
2016). Such modifications may have significant influence
on the demography of exposed populations (Stark and
Banks 2003; Desneux et al. 2007). Moreover, it has been
reported that in a growing number of arthropod species,
pesticide-induced hormesis may account for pest resurgence
(Cordeiro et al. 2013; Guedes et al. 2016).

Life table parameters are effective indexes that can be
used to assess the overall sublethal effects at the population
level (Stark and Banks 2003; Biondi et al. 2013).
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The survival, development and reproduction of the insect
individuals exposed to increasing concentrations of a tox-
icant can be observed and recorded over their life span. Net
reproductive rate (R0: the population growth rate per gen-
eration with regard to the number of female offspring pro-
duced per female), intrinsic rate of increase (rm: the ability
of a population to increase logarithmically in an unlimited
environment), finite rate of increase (λ: the factor by which
a population multiplies) and mean generation time
(T: the average interval separating births from one genera-
tion to the next) are four main indexes calculated in life
table experiments (Carey 1993). The intrinsic rate of
increase (rm) is a key parameter, and represents the ability of
a population increasing logarithmically. It has been pro-
posed as a more effective parameter to predict the devel-
opment of population in an unlimited environment (Birch
2007). In addition to assessment of individual-level effects
of pesticides, studying the impact on demographic para-
meters e.g. the intrinsic rate of increase, is proposed as the
more reliable assessment on the toxic effect of insecticides
(Forbes and Calow 1999, Stark and Banks 2003, Desneux
et al. 2006a; 2007).

The soybean aphid, Aphis glycines Matsumura (Hemi-
ptera: Aphididae) is a phytophagous insect that feeds on
soybean phloem and causes significant damage to soybean,
Glycine max (L.). The main injuries of the plants caused by
the A. glycines are leaf curling, premature plant develop-
ment, stunted growth, fewer pod set and smaller seed size
(Wang et al. 1996; Beckendorf et al. 2008). In addition, this
pest can transmit numerous plant viruses, including soybean
mosaic virus, bean yellow mosaic virus, tobacco vein
mottling virus and tobacco etch virus (Hill et al. 2001),
which can decrease seed quality and cause yield losses
(Ragsdale et al. 2011; Damsteegt et al. 2011). Aphis gly-
cines is native to Asia but was detected in North America in
2000, thereafter spreading to 30 states in the US and 3
provinces in Canada by 2009; and became a major pest on
soybean crops in North America (Ragsdale et al. 2011).
Given the potential for economically significant damage,
several control strategies have been experimented and
employed against this pest. Although environmentally-
friendly control tactics, such as the use of resistant plant
varieties (Li et al. 2004; Mensah et al. 2005) and the use of
generalist and specialized natural enemies for biological
control (Desneux et al. 2006b; 2009; 2012; Miao et al.
2007; Lundgren et al. 2009) have been promoted through
biological control programs, chemical control measures still
play a basic and important role in Integrated Pest Man-
agement (IPM) programs against this pest (Ragsdale et al.
2011).

Beta-cypermethrin belongs to the pyrethroid family. It
has a broad insecticide spectrum and a wide application in
the control of pests (Gao et al. 2008). In addition, sublethal

effects of beta-cypermerthrin have been recently reported
for various insect pests. For example, the pupation rate,
emergence rate and oviposition period of Plutella xylostella
exposed to sublethal concentration (LC10) of beta-
cypermethrin were significantly decreased. However,
fecundity of treated P. xylostella significantly increased
(Han et al. 2011). Moreover, sublethal concentrations of
beta-cypermethrin (LC10 and LC15) reduced longevity and
fecundity of Acyrthosiphon pisum adults (Wang et al.
2014).

Pests may be exposed to sublethal concentrations of
pesticides, due to pesticide degradation in fields after initial
applications, as well as varying distribution at the time of
applications (Desneux et al. 2005). Such an exposure may
prompt unintended effects on pests, such as hormesis, and
may lead to pest outbreaks (Guedes et al. 2016). Hormesis
is a dose-response relationship for a single endpoint whose
characteristic is the reversed response between low and high
dose of a stressor (Kendig et al. 2010). Research on such
sublethal effects of pesticides on pests is important for
optimizing pesticide-based IPM (Planes et al. 2013; Guedes
et al. 2016). However, potential sublethal effects of beta-
cypermethrin on the demographic parameters of A. glycines
are still unknown. In this study, we assessed the effects of
five sublethal concentrations of beta-cypermethrin on var-
ious biological traits and demographic parameters of A.
glycines using a TWOSEX-MSChart computer program
(Chi 2012). The results of the present study may be helpful
for optimizing IPM programs on soybean aphids.

Materials and methods

Study insects

The laboratory colony of A. glycines was established from
apterous individuals that were collected from a soybean
field in Langfang Experimental Station (Hebei province,
China) in June 2007. The colony was maintained by con-
tinuous supply of insecticide-free soybean seedlings that
grew on vermiculite in climate chambers, at 25± 2 °C,
60± 10 % RH (relative humidity), L: D (light:dark)= 17:7.
New soybean seedlings were provided weekly to the colony
and aphids were transferred by replacing infested seedlings
with insect-free ones (Qu et al. 2015).

Insecticide and acute toxicity assessment

Analytical grade beta-cypermethrin (95%) was purchased
from Jiangsu Pesticide Research Institute Co., Ltd (China).
Bioassays were conducted using an insect-dipping method
according to the Agricultural Industry standard of the
People’s Republic of China (NY/T 1154.6-2006).
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Preliminary experiments were carried out to determine the
scope of concentrations to be tested and then six con-
centrations of beta-cypermethrin (1000, 100, 50, 10, 1 and
0.1 µg/L) were used in the bioassays. Leaf discs (15-mm
diameter) were cut from fully expanded insecticide-free
soybean leaves, and then placed upside down onto 2% agar
into a 12-well tissue-culture plate. Twenty aphids per
replicate were dipped into insecticide solution for 10 s, and
then introduced into a well that was confined using a filter
paper strip (Hangzhou, China) and there were four repli-
cates per tested concentration. Control aphids were dipped
into a solution of distilled water containing 0.005% (v/v)
Triton X-100 (a non-ionic surfactant) and 0.1% acetone,
which is equal to the concentration of acetone in the dipping
solution at the highest concentration tested. The mortality
was assessed 24 h post-treatment of exposure; aphids that
did not move legs when touched with a fine brush, i.e., no
reflex movement, were considered dead (Moores et al.
1996). All the experimental arenas were maintained in cli-
mate chambers under the same conditions as above. The
concentration-mortality (Abbott 1925) regression line, LC5

and LC15 were calculated to obtain the concentrations for
subsequent experiments.

Sublethal concentration assessment

The assessment was carried out using the insect-dipping
method, as described above (section Insecticide and acute
toxicity assessment). Five low concentrations of beta-
cypermethrin i.e., 0.625, 1.25, 2.5, 5 (nearly LC5) and 10
µg/L (nearly LC15) were used during the assays. The mor-
tality rates induced by the five concentrations were com-
pared with those observed in control individuals that were
exposed to distilled water containing 0.005% (v/v) Triton
X-100 plus 0.001% acetone.

Sublethal effects on biological and demographic
parameters

Newly-hatched A. glycines nymphs were collected within 24
h after spawning. There were 31, 32, 33, 32, 40, 32 newly-
hatched nymphs in control, 0.625, 1.25, 2.5, 5 and 10 µg/L
beta-cypermethrin treatment groups, respectively, in the life
table experiment. Each individual growing on one
insecticide-free soybean seedling was considered as one
replicate which was kept in climate chambers, at 25± 2 °C,
60± 10 % RH, L:D= 17:7. Survival and development of
each nymph were recorded every day. On the fifth day after
birth, the third instar nymphs in the six groups were exposed
to the corresponding concentrations of beta-cypermethrin
(0.625, 1.25, 2.5, 5 and 10 µg/L) and control solution,
respectively. Survivals and development were recorded daily
until the end of the experiment (i.e., when adults died). When

the nymphs became adults, oviposition was also checked
until adult death. Every 5 days, the soybean seedlings were
replaced by new ones for aphid feeding (Qu et al. 2015).

Data analysis

LC5, LC15 and LC50 values were calculated using SPSS 20.0
in probit analysis (SPSS Inc, Chicago, USA). Mortality of the
apterous adults exposed to beta-cypermethrin was analyzed
using SPSS 20.0 in a one-way analysis of variance
(ANOVA) followed by a Tukey’s HSD test for multiple
comparisons to assess the sublethal concentrations of beta-
cypermethrin. A two-way ANOVA was processed on the
cumulative number of offspring over time exposed to
different treatments. Moreover, to compare the differences of
cumulative number of offspring among treatments
(P< 0.05), a Tukey’s HSD test was carried out. Raw data
from all individuals were analyzed using the TWOSEX-
MSChart computer program (Chi 2012) according to the age-
stage, two-sex life table theory (Chi 1988). Moreover, sur-
vival, development, oviposition and population parameters,
their mean values and standard errors were estimated by the
bootstrap method involved in the TWOSEX-MSChart com-
puter program. Significant differences (P< 0.05) among
different treatments were calculated by Tukey’s HSD method
included in the TWOSEX-MSChart computer program. The
curves of survival rates and cumulative number of offspring
per female were drawn by Sigmaplot 10.0.

In the two-sex life table theory, the age-stage specific
survival rate (Sxj) (x= age, j= stage) is the probability that
a newly laid egg will survive to age x and stage j. The
fecundity value (Fxj) is defined as the reproductive rate of an
individual in age x and stage j. The life expectancy (Exj) is
the time that one individual of age x and stage j is expected
to live. The age-specific survival rate (lx) and the age-
specific fecundity (mx) were also recorded. Among the
demographic growth parameters calculated according to
Chi and Su (2006) as follows: (i) Net reproductive rate
(R0=∑lxmx), (ii) Intrinsic rate of increase (rm) can then be
estimated with the iterative bisection method from the
Euler-Lotka equation, with age indexed from 0 (Goodman
1982) as follows:

P1
x¼0 e

�r xþ1ð Þlxmx ¼ 1. (iii) Finite rate of
increase (λ= exp(rm). (iv) Mean generation time (T) is
calculated as T= lnR0/rm.

Results

Acute toxicity of beta-cypermethrin on A. glycines

Based on log-probit regression analysis, the regression
equation of mortality relative to concentration is Y=
1.699X+ 2.270 (χ2= 10.914, P= 0.976). The LC50 of
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beta-cypermethrin on third instar A. glycines was 46 µg/L
(95% confidence interval: 34–59 µg/L). LC5 and LC15 of
beta-cypermethrin on A. glycines were 5 µg/L (2–9 µg/L)
and 11 µg/L (6–17 µg/L), respectively.

Assessment of sublethal concentrations

The exposure to 0.625, 1.25, 2.5, 5, 10 µg/L beta-
cypermethrin and control solution led to 5.76 % (95%
confidence interval: 0.83–10.69 %), 7.72% (2.34–13.10 %),
8.97% (6.35–11.59 %), 6.04 % (2.88–9.20 %), 12.1 %
(5.51–18.65 %) and 7.74 % (4.09–11.38 %) mortality of
aphids, respectively. There was no significant difference
in mortality among these exposure concentrations, includ-
ing control (F5, 24= 1.940, P= 0.125). Therefore, all these
beta-cypermethrin concentrations were considered as sub-
lethal ones according to Desneux et al. (2007).

Effects of sublethal concentrations of beta-cypermethrin
on demographic parameters of A. glycines

Sublethal beta-cypermerthrin concentrations showed little
influence on survival rate in the first 8 days after exposure to
the insecticide (Fig. 1). However, the survival rate of indi-
viduals exposed to 10 µg/L i.e., approximately LC15,
declined rapidly on the 14th day after birth, which was
7 days earlier than that of the control. Aphids from the
control group survived the longest and the last one survived
until the 28th day, while the last aphid of 0.625, 1.25, 2.5, 5
and 10 µg/L beta-cypermethrin treatment groups died on the
27th, 23rd, 27th, 26th and 21st day, respectively.

Effects of sublethal concentrations of beta-cypermethirn
on the development duration in young instar, adult long-
evity and oviposition period of A. glycines are reported in

Table 1. The 10 µg/L beta-cypermethrin significantly pro-
longed the development time of aphids in the 4th instar.
However, the sublethal concentrations of beta-cypermethrin
significantly shortened the adult lifespan and oviposition
period of A. glycines. In addition, the 10 µg/L beta-
cypermethrin had a strongest negative effect on both life-
span and oviposition period of A. glycines, which were
significantly shorter than those of other sublethal
concentrations.

The result of two-way ANOVA showed that concentra-
tion has a significant effect (F5= 17.87, P< 0.001) on the
cumulative number of offspring over time. The cumulative
numbers of offspring per adult in 0.625, 1.25, 2.5, 5 and 10
µg/L beta-cypermethrin treatment groups and control were
(i) 60.27(95 % confidence interval: 57.57–62.97); (ii) 58.28
(56.17–60.39); (iii) 63.16 (59.27–67.06); (iv) 75.41
(72.46–78.36); (v) 52.52 (49.25–55.78) and (vi) 62.97
(60.65–65.29) respectively. The cumulative number of
offspring in 5 µg/L beta-cypermethrin treatment group sig-
nificantly increased but it significantly decreased in 10 µg/L
treatment group compared to control and other treatments
(Fig. 2).

Effects of sublethal concentrations of beta-cypermethrin
on the demographic parameters of A. glycines are reported
in Table 1. Net reproduction rate (R0) of the aphids exposed
to 5 µg/L beta-cypermethrin (73.521 ± 2.348) significantly
increased while R0 in 10 µg/L beta-cypermethrin treatment
group (50.863 ± 2.214) significantly decreased compared to
the control (60.975 ± 2.262) and other sublethal con-
centration treatments (0.625, 1.25 and 2.5 µg/L), whose R0

were 56.459 ± 2.846; 56.535± 1.985 and 61.184 ± 2.709,
respectively. In addition, intrinsic rate of increase (rm) of A.
glycines exposed to 5 µg/L beta-cypermethrin (0.429 ±
0.003) was significantly higher than that of the control
(0.409 ± 0.006) and other sublethal concentration treat-
ments. Similar results were achieved on finite rate of
increase (λ), i.e., the λ of A. glycines treated with 5 µg/L
beta-cypermethrin (1.536 ± 0.006) was significantly higher
than that of the control (1.505 ± 0.008) and other sublethal
concentrations. Mean generation time (T) of aphids exposed
to 1.25 µg/L (9.742 ± 0.088) and 10 µg/L (9.665 ± 0.095)
was significantly shorter than that of the control (10.05 ±
0.099), while the other sublethal concentrations showed no
significant differences in T values.

Discussion

In this study, sublethal and stimulatory effects of beta-
cypermethrin at sublethal concentrations on A. glycines
were evaluated. We demonstrated that these concentrations
decreased the adult lifespan and reproductive period of
A. glycines. These results concur with the recent research

Fig. 1 The survival rate of A. glycines exposed to five sublethal
concentration of beta-cypermethrin (and water as control)
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showing that low concentrations of beta-cypermethrin
reduced oviposition period and adult male longevity in
P. xylostella (Song et al. 2013). Similar findings have been
reported for other pyrethroid insecticides e.g. P. xylostella
adult longevity significantly decreased by 36% when larval
stages were treated with LC1 of permethrin and fenvalerate
(Kumar and Chapman 1984). Sublethal concentration of
Cyhalothrin (LC20) shortened the adult lifespan of Adel-
phocoris suturalis and prolonged their hatching periods
(Li et al. 2008). In addition, both repellent and antifeedant
activities were detected on larvae of P. xylostella exposed to
sublethal concentrations of pyrethroid. Therefore, pyre-
throids probably reduced insect fitness by lowering its
feeding activity, thus negatively affecting uptake of
nutriments.

In our study, a significantly stimulatory effect on
fecundity was obtained when the aphids were exposed to 5
µg/L beta-cypermethrin (LC5), the exposed adults produ-
cing more offspring than in the control group; therefore
pesticide-induced hormesis may occur in A. glycines when
exposed to beta-cypermethrin in soybean fields. Similar
hormesis has been reported in P. xylostella which laid more
eggs when exposed to sublethal doses of the pyterthroid
fenvalerate (Sota et al. 1998; Fujiwara et al. 2002). Such
stimulatory effect on fecundity may also occur in case of
natural enemies; the cumulative numbers of offspring
increased by 49.64% (compared to the control) after lady-
bird beetles were exposed to a sublethal concentration of
beta-cypermethrin (LC5) (Xiao et al. 2016). The possible
physiological mechanisms of stimulatory effects onT
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Fig. 2 The cumulative number of offspring per A. glycines adult
exposed to sublethal concentrations of beta-cypermethrin. The cumu-
lative number of offspring per adult was analyzed using two-way
ANOVA over the time among different treatments and followed by
Turkey HSD test to compare the difference among different treat-
ments. The curves of cumulative number of offspring with different
letters indicated significant difference at P< 0.05 level
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reproduction were closely related to the insect hormone
and change in the transcription level of vitellogenin. The
levels of juvenile hormone III in adult aphids which
fed on leaves treated with sublethal concentrations of imi-
dacloprid showed a similar trend to that of fecundity (Yu
et al. 2010).

Life table is one of the most useful tools in the research
of pest population dynamics (Carey 1993). In our study,
stimulating effects on population growth are more obvious
when the sublethal concentration of beta-cypermethrin
increases. The largest stimulatory effect on fecundity was
achieved when aphids were exposed to the sublethal con-
centration of 5 µg/L (LC5). Net reproductive rate (R0),
intrinsic rate of increase (rm) and finite rate of increase (λ) of
the A. glycines population all significantly increased.
However, the population growth was inhibited when the
sublethal concentration continued to increase to 10 µg/L
(LC15). Our results are consistent with previous studies. The
soybean population treated with imidacloprid at a con-
centration of 0.05 mg/L showed enhanced net reproductive
rate (R0). The reversed effect on R0 was achieved when
soybean aphids were exposed to 0.2 mg/L imidacloprid (Qu
et al. 2015). Moreover, it has also been found that beta-
cypermethrin at a sublethal concentration (LC5) increased
R0 and rm of Harmonia axyridis population in F1 generation
(Xiao et al. 2015, 2016). However, various studies reported
contrasted results on different pests and/or different pesti-
cides. The R0, rm and λ of the P. xylostella population
treated with LC25 of chlorantraniliprole were remarkably
lower than those of the control (Guo et al. 2013). Different
effects on demographic parameters may be linked to the
action modes of pesticides, exposure doses of pesticides,
pest species, and pest feeding ways used in researches.

Hormesis in insects exposed to sublethal concentrations
of insecticides has been documented for several taxa and
compounds (Tan et al. 2012; Qu et al. 2015; Xiao et al.
2015), especially for pyrethoids (Cutler. 2013). In the pre-
sent study, we have assessed whether hormesis effects,
especially on fecundity traits, may occur in A. glycines
during and/or after exposure to sublethal concentrations of
beta-cypermethrin. Our findings indicated that a high
sublethal concentration of beta-cypermethrin (5 µg/L)
increased fecundity by 19 % (12–28 %) compared with
control. By contrast, beta-cypermethrin at the highest sub-
lethal concentration (10 µg/L) decreased the fecundity by
17 % (8–25%). Our results concur with a previous study
on citrus thrips; high malathion residue concentrations
initially inhibited fecundity during exposure while this
reproductive trait was increased post-exposure (Morse and
Zareh 1991). The mechanism(s) underneath insecticide-
induced hormesis effect in insects may be linked to
conservation laws in mass and energy. The insects
have to allocate energy/mass to detoxify insecticides at

sublethal doses. Some life-history traits such as develop-
ment and reproduction are changed as a result of responses
to the stimulation (Jager et al. 2013). Pyrethroid
(Cordeiro et al. 2013) and neonicotinoid insecticides (Yu
et al. 2010) have been reported to cause a hormesis on
pests, especially on the reproduction trait. Exposure to
sublethal concentrations of imidacloprid could stimulate
reproduction on Myzus persicae (Cutler et al. 2009;
Rix et al. 2016) and A. glycines (Qu et al. 2015). In addi-
tion, the applications of synthetic pyrethroids induce
resurgence of Aphis gossypii on cottons (Nandihalli et al.
1992). Recently, deltamethrin-induced hormesis has been
linked to red mite outbreaks (Cordeiro et al. 2013). Still,
resurgence of a given pest can be also attributed to various
biotic and abiotic factors and not necessarily induced by
hormesis. For example, non-target harmful effects of pes-
ticides on arthropod natural enemies could be largely
responsible (Desneux et al. 2007). Frequent insecticide
sprayings could also induce pest population resurgence by
increasing the pest resistance and disrupting the biocontrol
services provided by arthropod natural enemies in agro-
ecosystems (Lu et al. 2012).

Overall, our results on A. glycines, together with the
evidence of other insecticides on pests (Fujiwara et al. 2002;
Cutler et al. 2009), suggest that insecticide-induced
hormesis should be recognized as one of the mechanisms
explaining arthropod pest resurgence (Cutler 2013; Guedes
et al. 2016). The resistant genotypes can survive after
insecticide spray. Thereafter, the stimulatory effect on
development and growth of resistant insects, i.e., hormesis,
may favor the population growth of these individuals.
Therefore, hormesis is an unfavorable phenomenon to
insecticide resistance management and may shorten the
lifespan of a given insecticidal compound, especially when
it is used frequently. Key changes in biochemical endpoints
have recently been analyzed during pesticide-induced sti-
mulation (Cutler 2013; Guedes et al. 2016). However, gene
expression during the sublethal effects and hormesis has not
been fully studied in insect-insecticide models. Thus, fur-
ther research on the molecular mechanisms of sublethal
effects and insecticide-induced hormesis is required.
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