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Abstract
Cadmium (Cd), a widely distributed environmental pollutant in agroecosystems, causes negative effects on crops and
herbivores through bottom-up processes. The gut microbial community of an insect can play a critical role in response to
metal stress. To understand how microbiota affect the stress responses of organisms to heavy metals in agroecosystems, we
initially used 16S rRNA sequencing to characterize the larval gut microbiota of Chilo suppressalis, an important agricultural
pest, exposed to a diet containing Cd. The species richness, diversity, and composition of the gut microbial community was
then analyzed. Results revealed that while the richness (Chao1 and ACE) of gut microbiota in larvae exposed to Cd was not
significantly affected, diversity (Shannon and Simpson) was reduced due to changes in species distribution and relative
abundance. Overall, the most abundant genus was Enterococcus, while the abundance of the genera Micrococcaceae and
Faecalibaculum in the control significantly superior to that in Cd-exposed pests. Phylogenetic investigation of microbial
communities by the reconstruction of unobserved states (PICRUSt) showed that the intestinal microorganisms appear to
participate in 34 pathways, especially those used in environmental information processing and the metabolism of the
organism. This study suggests that the gut microbiota of C. suppressalis are significantly impacted by Cd exposure and
highlights the importance of the gut microbiome in host stress responses and negative effects of Cd pollution in
agroecosystems.
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Introduction

Heavy metal pollution is a serious and widespread problem
worldwide (Lefcort et al. 2010; Nogawa et al. 2019; Zhao
et al. 2022), contaminating agricultural soils and interfering

with plant growth, thereby threatening crop production and
food safety (Horiguchi et al. 1994; Huybrechts et al. 2019;
Liu et al. 2020; Yu et al. 2022). More importantly, heavy
metals can be absorbed and accumulated in plants, and
subsequently transferred to higher trophic levels (herbivores
and natural enemies), triggering multiple indirect bottom-up
effects along food chains (Butler and Trumble 2008; Han
et al. 2022; Tibbett et al. 2021). The effects triggered by
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heavy metals are key ecological forces driving
crop–arthropod community dynamics, ultimately impacting
the fitness of organisms in agricultural systems (Dar et al.
2019; Han et al. 2022; Khan et al.2023).

Among heavy metals, Cd ranks 7th in the list of the top
20 most damaging substances owing to its extraordinarily
negative health effects (Faroon et al. 2012; Xiao et al.
2013). Notably, Cd may be detrimental to the survival,
development, behavior, and population dynamics of herbi-
vores (Di et al. 2020; Lin et al. 2020; Yan et al. 2023).
Moreover, accumulation in herbivores leads to this heavy
metal cascading through the food chain thereby exposing
higher-level organisms to the contaminant. The mild stress
of Cd exposure can also induce hermetic effects in insects
(Cutler et al. 2022; Wang et al. 2024; Wei et al. 2020). For
example, Su et al. (2014) founded that low doses of Cd in
artificial diets increase populations of Spodoptera exigua
(Lepidoptera: Noctuidae), whereas high doses produced the
opposite effect. However, very few studies have focused on
specific mechanisms driving increased or reduced fitness of
arthropods following exposure to Cd.

The gut microbiota makes crucial contributions to func-
tions of host fitness, including development, digestion,
behavior, and immune system (Dominguez-Bello et al.
2019; Li et al. 2024; Luo et al. 2021; Morais et al. 2021). In
general, some gut microbiotas are necessary for herbivores’
growth and reproduction (Bing et al. 2024; Li et al. 2022;
Luo et al. 2019), but can also strongly affect resistance to
environmental stressors (e.g. pesticide, Sharma et al. 2023)
and even natural enemies (Frago and Zytynska 2023; Luo
et al. 2022; Man et al. 2023). Herbivores suffer directly
from bottom-up forces triggered by heavy metals in the
environment (Dar et al. 2019; Tibbett et al. 2021) and
although these contaminants may alter the composition of
intestinal microbiota (Guo et al. 2023; Li et al. 2021; Wu
et al. 2020), the effect of heavy metals on the composition
and diversity of the intestinal microbial community has
received relatively little attention.

Lepidopteran insects represent some of the most impor-
tant pest species in agriculture and forestry, with eight
species ranked in the top 20 insect pests in publications in
Centre for Agriculture and Biosciences International (Royal
Botanic Gardens 2017). These pests are geographically
widespread and often have a large host range, and traits
which could exacerbate bottom-up effects triggered by
heavy metals. The rice striped stem borer, Chilo sup-
pressalis Walker (Lepidoptera: Pyralidae), is one of the
most destructive rice pests worldwide (Lu et al. 2019; Ma
et al. 2020; Wang et al. 2021). Previous studies have indi-
cated that exposure to Cd in artificial diets inhibits the fit-
ness of C. suppressalis (Liu 2020; Huang et al. 2023) but
understanding the mechanisms driving these negative
effects have not been fully characterized. To understand

how gut microbiota affect the stress responses of this pest to
heavy metals in agroecosystems, we first used 16S rRNA
sequencing to characterize the larval gut microbiota of C.
suppressalis exposed to artificial diet containing Cd. Then,
we analyzed the species diversity, richness, and composi-
tion of the gut microbial community and ultimately, discuss
the potential role of gut microbiota in pest management
under heavy metal stress in agroecosystems.

Materials and methods

Insect rearing

Chilo suppressalis females, initially collected in 2022 from
rice fields (Nanchang County, Nanchang, Jiangxi Province,
China), were maintained under laboratory conditions as
described in detail in Huang et al. (2023). Larvae were
reared on artificial diets and maintained at 28 ± 1 °C and
70 ± 5% relative humidity with a 16:8 h (L:D) photoperiod
(Han et al. 2012). Newly hatched neonates were used for the
next experiment.

Cadmium treatment

Based on data from the China Food Safety National Stan-
dard for Maximum Levels of Contaminants in Foods
(SAMR and NHCC 2022), Cd concentrations in stalks of
rice in paddies in China (Liu 2020), and a previously
published study (Huang et al. 2023), we used the
environmentally-relevant concentration of 1.0 mg/kg of
CdCl2 in artificial diets. These diets consisted of cadmium
chloride (CdCl2, Aladdin Bio-Chem Technology, China) or
a distilled water control and were prepared following the
protocols published in Huang et al. (2023). Fifty larvae
were used in each treatment with three replications, repre-
senting 150 per treatment (N= 3). Ten 4th instar larvae
(2nd day in 4th instar, 8 d after treatment) per replications
were randomly selected for gut tissue collection.

Gut tissue collection

Samples were collected following protocols described by
Chen et al. (2022). The larvae were surface-sterilized in
75% ethanol for 120 s and rinsed three times with sterile
water for 30 s. The entire gut tissues were dissected in
sterile petri dishes under a stereoscope (Stemi DV4, Zeiss,
Germany) with sterile forceps, and the dissected midgut
tissues were rinsed with sterile phosphate buffered saline
(PBS, 0.01M, Solarbio, Beijing). These samples were
transferred into a sterile 2-mL Eppendorf tube containing
500 µL PBS and immediately frozen in liquid nitrogen and
stored at −80 °C for subsequent DNA extraction. These 10
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larvae were then pooled as a biological sample, with 3 such
pools (representing 3 biological replicates) being collected
(N= 3).

DNA extraction and sequencing

DNA was extracted using a TGuide S96 Magnetic Soil/
Stool DNA Kit (TIANGEN, Beijing, China) according to
the manufacturer’s protocol and DNA quality was assessed
using a fluorometer (synergy HTX, Gene Company Lim-
ited, Hong Kong). The V3+V4 regions of 16S rRNA
genes were amplified with the specific primers 338F (5’-A
CTCCTACGGGAGGCAGCA-3’) and 806R (5’-GGACT
ACHVGGGTWTCTAAT-3’) (Kozich et al. 2013). The
polymerase chain reaction (PCR) conditions followed those
published by Wang et al. (2022): 98 °C for 30 s, followed
by 10 cycles of 98 °C for 10 s, 65 °C for 30 s, 72 °C for 30 s,
and 72 °C for 5 min. Then PCR products were purified
using VAHTSTM DNA clean beads (Vazyme, Nanjing,
China). The PCR products were determined on 1.8%
agarose gels, quantified by ImageJ (Schneider et al. 2012),
and further purified using the E.Z.N.A. Cycle Pure Kit
(Omega, Norcross, GA) according to the manufacturer’s
instructions. 150 ng per sample in each treatment was mixed
to form a sequencing library. Illumina NovaSeq 6000 was
used to sequence by Biomarker Technologies (Beijing,
China).

Bioinformatic analysis

After sequencing, raw data were first analyzed using
Trimmomatic (var. 0.33) (Bolger et al. 2014). Subsequently,
primer sequence recognition and adapters removal were
performed for high-quality reads using Cutadapt (var. 1.9.1)
(Martin 2011). Paired-end reads were merged using
USEARCH (var. 10.0) (Edgar 2013) based on 97%
sequence similarity, and filtered at 0.005% of the total
number of sequences. The chimera sequences were identi-
fied and removed using UCHIME (var. 8.1) (Edgar et al.
2011). After sequence assembling, amplicon sequence
variants (ASVs) data were filtered to remove chimera, then
divided with DADA2 (Callahan et al. 2016) in QIIME2
2020.6 (Bolyen et al. 2019) at an 80% confidence threshold.
Paired reads were trimmed and filtered with a maximum of
2 expected errors per read. The RDP (ribosomal database
project) classifier (http://rdp.cme.msu.edu/) was used to
analyze the phylogenetic affiliation of each 16S rRNA gene
sequence (ASVs) against the Silva (SSU132) 16S rRNA
database using a confidence threshold of 70%. According to
results of the taxonomic analysis, the species composition
of different samples at each taxonomic level (including
phylum, class, order, family, genus and species levels) was
obtained and the relative abundance map of each species

composition was drawn using R software (var. 3.3.1).
Species with an abundance less than 1% were merged.

The reconstruction of unobserved states (PICRUSt) was
used to generate a functional profile based on 16S rRNA
data. All sequences were first reclassified to the Greengenes
gene database (DeSantis et al. 2006) and an ASVs biom
table was created using Mothur. Following this, normalized
ASVs tables were generated using PICRUSt (Langille et al.
2013), and these were used to create a functional meta-
genome prediction file for each sample. The functional
metagenome predictions files were analyzed using the
“categorize by function” command (level 3) using the
KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways.

Diversity analyses

The diversity analyses followed those published by Wang
et al. (2022). The alpha diversity was evaluated using
QIIME2 (Bolyen et al. 2019), including ACE, Chao1 for
species richness, and Shannon and Simpson Indices for
species diversity. The beta diversity analysis, based on the
weighted UniFrac distance, was analyzed by nonmetric
multidimensional scaling (NMDS). Metagenomic bio-
marker discovery by way of class comparison, tests of
biological consistency and effect size estimation were
conducted by Line Discriminant Analysis Effect Size
(LEfSe) (Segata et al. 2011).

Statistical analysis

A Student’s t test was used to analyze alpha diversity
indices between the control and each Cd treatment
(P < 0.05). The Wilcoxon rank test was used to analyze
abundance at the phylum and genus levels between the
control and each Cd treatment (P < 0.05). SPSS statistical
software (var. 25.0, IBM, USA) was used for statistical
analyses.

Results

Sequencing and ASVs distribution

A total of 473,619 pairs of raw reads were obtained from
6 samples. A total of 73,281–80,271 clean reads were
produced overall. High-quality reads were clustered into
ASVs with a 97% identity, with 417–1176 ASVs produced
for each sample (Supplementary Table S1).

Sample rarefaction curves were created and demon-
strated that the number of ASVs gradually flattened and
entered the plateau stage, indicating the sequencing depth
used captured the majority of midgut bacterial diversity in
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the samples (Supplementary Fig. S1A). The Shannon index
rarefaction curve also indicated the sequencing depth was
sufficient to cover most of the microbial information in our
study (Supplementary Fig. S1B).

Gut microbial diversity

The alpha diversity indexes were calculated based on ASVs
table and were used to analyze species diversity and rich-
ness between Cd exposed and unexposed larvae. Although
the richness (Chao1 and ACE) was not significantly

affected (Supplementary Table S2, Chao1, t= 2.515, df=
4, P= 0.066, ACE, t= 2.516, df= 4, P= 0.066), diversity
(Shannon and Simpson) was reduced due to changes in
species distribution and relative abundance (Fig. 1A, B,
Supplementary Table S2, Shannon, t= 8.383, df= 4,
P < 0.001, Simpson, t= 5.174, df= 4, P= 0.007). There-
fore, Cd exposure altered the composition and evenness of
species in the intestinal microbiome but did not eliminate
entire species. Additionally, the midgut microbiota in the
control group differed significantly and was significant
separately clustered from Cd-exposed larvae (Fig. 1C,

Fig. 1 Comparison of the diversity and composition of overall bac-
terial communities in cadmium-exposed and control larvae of Chilo
suppressalis. A Shannon’s diversity index; B Simpson’s diversity
index (Student’s t test was used to compare the difference between

control and treatment); C Nonmetric multidimensional scaling
(NMDS) of bacterial communities; D Venn diagram comparing the
numbers of genera of gut microbiota shared and unique in the control
(CK) and cadmium exposed treatment (T)
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AMOVA, P < 0.001). Venn diagrams illustrated that there
were 248 and 342 unique genera for the control and Cd-
exposed treatments, respectively, with 320 genera being
shared (Fig. 1D).

Gut microbial community composition

The ASVs of the midgut microbiota from Cd-exposed and
unexposed C. suppressalis were classified into 32 phyla and
860 genera. The three most abundant phyla were Firmi-
cutes, Proteobacteria and Bacteroidetes, accounting for
more than 92% of bacterial sequences obtained (Fig. 2A).
The dominant bacterial phylum was Firmicutes in both the
control and treatment groups. Remarkably, the Bacter-
oidetes phylum was the second most abundant microbiota in
the control group, accounting for 9.7% of the total bacterial
sequences, and was significantly higher than the Cd
exposed larvae (2.2%, P < 0.05, Fig. 2A). The most abun-
dant genera were Enterococcus, while the genus Micro-
coccaceae and Faecalibaculum had a significantly higher
abundance in the control group (P < 0.05, Fig. 2B). In
addition, hierarchical cluster analysis based on weighted
UniFrac distance showed that there were two main branches
of the microbial communities from C. suppressalis larvae.
Samples from the Cd exposed larvae clustered into one
branch and samples from non-exposed larvae clustered into
the other (Fig. 3).

The LEfSe analysis showed that significant differences at
the genus, family, order, class, and phylum levels was led

by differences at the species level directly (Fig. 4A). The
microbial abundance of one single order, family, and genus
in the Cd-exposed group was significantly higher in this
group than that in the control group. However, the microbial
abundance of 4 orders, 5 families, and 3 genera from the
control group was significantly higher than those of the Cd-
exposed group (Fig. 4A), and the abundances of the class
Enterococcus was significantly enriched in the Cd-exposed
group (Fig. 4B, LDAscore= 5.211 > 4.0). The abundances
of the order Bacteroidales was significantly higher in the
control group compared to the Cd-exposed group (LDA
score= 4.618 > 4.0).

Prediction and differences in gut microbial
metabolism pathways

According to PICRUSt, intestinal microorganisms mainly
participated in 34 pathways responsible for cellular pro-
cesses, environmental information processing, genetic
information processing, metabolism, and organic systems,
especially those used in environmental information pro-
cessing and the metabolism of the organism (Fig. 5).

Discussion

Our research revealed that exposure to Cd significantly low-
ered the gut microbiota diversity, but did not significantly
influence their richness; therefore, Cd exposure altered the

A B

Fig. 2 Relative abundance of the ten most frequently observed phyla (A) and the ten most abundant genera (B) of gut microbiota of Chilo
suppressalis exposed to cadmium (T1-3) or in the control group with no exposure (CK1-3)

Heavy metal exposure reduces larval gut microbiota diversity of the rice striped stem borer, Chilo. . .



composition and evenness of species in the intestinal micro-
biome but did not eliminate entire species. These intestinal
microorganisms mainly participated in 34 pathways, espe-
cially in the environmental information processing and
metabolism pathways. This study therefore suggests that gut
microbiota affects the response of C. suppressalis to Cd
exposure and highlights the importance of the gut microbiome
in host stress responses in agroecosystems.

An important result of this study was the significant
differences observed in the microbial community structure
and diversity of C. suppressalis following Cd exposure.
This indicates that the heavy metal exposure has a sig-
nificant influence on the microbiome in C. suppressalis. Our
results were largely consistent with a report by Wu et al.
(2020), in which exposure to Cd substantially decreased gut

microbiota diversity of the black soldier fly larvae, Her-
metia illucens (Diptera: Stratiomyidae). Similar results have
been reported for the pygmy grasshopper, Eucriotettix
oculatus (Orthoptera: Tetrigidae), in which gut microbial
community diversity in habitats polluted by heavy metals
was reduced (Li et al. 2021). In addition, different indexes
were used to describe the richness (number of species) and
evenness (relative abundance of species). Our results found
that while richness (Chao1 and ACE) was not significantly
affected, diversity (Shannon and Simpson) was reduced due
to changes in species distribution and relative abundance.
Therefore, Cd exposure altered the composition and even-
ness of species in the intestinal microbiome but did not
eliminate entire species. However, species richness was not
affected in the Wu et al. (2020) study that the black soldier
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fly larvae was exposed to Cd and Cu. These results suggest
that gut microbiota of arthropods can interact to environ-
mental stressors across different agroecosystems, but varies
with insect species.

Previous studies have shown that the gut bacterial
communities of C. suppressalis consist mainly of Firmi-
cutes, Proteobacteria, Actinobacteria and Bacteroidetes
(Chen et al. 2023a; Zhang et al. 2022; Zhong et al. 2021).
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Similarly, the top three abundant phyla of microbiota in our
study were Firmicutes, Proteobacteria and Bacteroidetes,
accounting for more than 92% of the bacterial sequences.
However, there is difference in the dominant phyla of
microbiota of C. suppressalis reared on different plants. The
predominant phyla were Proteobacteria and Firmicutes
when reared on water-oat fruit, while Proteobacteria
dominated when the insects were reared on rice seedlings
(Zhong et al. 2021). The three most dominant bacterial
phyla of C. suppressalis reared on artificial diets were
Firmicutes, Proteobacteria and Bacteroidetes (Chen et al.
2023a), and Proteobacteria, Firmicutes and Actinobacteria
were most common in overwintering larvae (Zhang et al.
2022). This suggests that the compositional change could
be, in part, an evolutionary mechanism to allow adaptation
to a wide range of host plants.

Several functions of the dominant gut microbiota that
could affect host plant acceptability are evident. Firstly, our
study found that the Firmicutes and Bacteroidetes phyla
were the most abundant microbiota. Bacteroidetes and
Firmicutes have been shown to be necessary components in
mammal lipid metabolism, suggesting that a change in their
abundance could affect the body weight of animals (Wu
et al. 2020; Zhu et al. 2018). Accordingly, the difference in
the abundance of Bacteroidetes and Firmicutes could
explain the developmental differences in C. suppressalis
reported after exposure to Cd (Huang et al. 2023), where Cd
exposure induced a significantly higher emergence rate and
female pupa ratio compared with those in the control.
Secondly, the most abundant genus recorded in our study
was Enterococcus, which showed significantly increased
abundance following exposure to Cd. Similar phenomena
have been observed in Bacillus thuringiensis (Bt)-suscep-
tible strains of C. suppressalis (Chen et al. 2023a). The
Enterococcus has been proven to be associated with
insecticide and pathogen resistance (Zhang et al. 2013; Shao
et al. 2014). However, the abundance of Muribaculaceae, a
family involved in resistance to environmental stressors
(Jiang et al. 2023; Zhou et al. 2023), in the gut microbiota of
C. suppressalis decreased sharply under Cd exposure. That
is, the presence of these two genera in C. suppressalis may
account for the resistance of this pest under environmental
stress (i.e. Bt toxins, heavy metals), suggesting complex and
closely-linked interactions between environmental stressors,
insect hosts and midgut microbes.

Although the two groups had differential enriched bac-
terial microbial communities, the functional potentials of
the gut microbiota from two groups seem to converge and
can be categorized into two main groups as environmental
information processing and metabolism. Gene function
analyses in rice striped stem borer microbiota after Cd
exposure indicated that intestinal microbiota primarily par-
ticipate in 34 pathways responsible for five functions.

Similar results have been found in the pygmy grasshopper,
E. oculatus, exposed to heavy metal pollution (Li et al.
2021) and the wolf spider, Pardosa pseudoannulata (Ara-
neae: Lycosidae), under Cd exposure (Wang et al. 2023). A
high diversity of gut microbiota in field-collected insecti-
cide-resistant populations of the brown planthopper, Nila-
parvata lugens (Hemiptera: Delphacidae), has been
observed when compared to laboratory-reared populations,
and enriched bacteria in resistant individuals was related to
detoxification (Malathi et al. 2018). Similar result has also
been found in the bean bug, Riptortus pedestris (Hemiptera:
Alydidae) (Kikuchi et al. 2012), the fall armyworm, Spo-
doptera frugiperda (Lepidoptera: Noctuidae) (Gomes et al.
2020) and C. suppressalis (Chen et al. 2023a). Specific
bacterial communities of the silkworm, Bombyx mori
(Lepidoptera: Bombycidae) played crucial roles in the
adaptation to Cd detoxification and immune regulation,
following exposure to Cd in mulberry leaves (Chen et al.
2023b). These previous findings, coupled with the results
presented from our study, indicate that gut microbes likely
have crucially important roles when herbivores are exposed
to environmental stresses such as heavy metals.

Conclusions

Our results documented that larval gut microbiota of an
important agricultural pest, C. suppressalis, were sig-
nificantly affected when exposed to an artificial diet
containing Cd. Importantly, gut microbiota diversity was
significantly reduced in Cd-exposed larvae as compared to
that in the control treatment without exposure, but not in
overall richness. The most abundant genus of microbiota
was Enterococcus, and Micrococcaceae may account for
the observed Cd resistance and degradation. Intestinal
microorganisms mainly participated in 34 pathways,
particularly the environmental information processing and
metabolism pathways. This knowledge could be valuable
for understanding the connection between Cd exposure,
changes in intestinal microbiota, herbivore stress respon-
ses in agroecosystems, and developing strategies to
manage pest populations while mitigating the negative
effects of Cd pollution. Such data suggest heavy metal
exposure can have profound implications in biological
control and species interactions in the field, possibly dri-
ven through changes in the microbiome of pest species.
Additional studies to explore the ecological performance
(i.e., duration, survival, fecundity and resistance to
stressors) of C. suppressalis with changes in gut microbe
communities stressed by Cd exposure are needed, and
could be used to determine the responsible gut bacteria
species for Cd resistance and/or degradation using
culture-dependent assays.
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